Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.580
Filtrar
1.
Front Plant Sci ; 15: 1358974, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559764

RESUMO

Sexual reproduction of Zygnematophyceae by conjugation is a less investigated topic due to the difficulties of the induction of this process and zygospore ripening under laboratory conditions. For this study, we collected field sampled zygospores of Spirogyra mirabilis and three additional Spirogyra strains in Austria and Greece. Serial block-face scanning electron microscopy was performed on high pressure frozen and freeze substituted zygospores and 3D reconstructions were generated, allowing a comprehensive insight into the process of zygospore maturation, involving storage compound and organelle rearrangements. Chloroplasts are drastically changed, while young stages contain both parental chloroplasts, the male chloroplasts are aborted and reorganised as 'secondary vacuoles' which initially contain plastoglobules and remnants of thylakoid membranes. The originally large pyrenoids and the volume of starch granules is significantly reduced during maturation (young: 8 ± 5 µm³, mature: 0.2 ± 0.2 µm³). In contrast, lipid droplets (LDs) increase significantly in number upon zygospore maturation, while simultaneously getting smaller (young: 21 ± 18 µm³, mature: 0.1 ± 0.2 and 0.5 ± 0.9 µm³). Only in S. mirabilis the LD volume increases (34 ± 29 µm³), occupying ~50% of the zygospore volume. Mature zygospores contain barite crystals as confirmed by Raman spectroscopy with a size of 0.02 - 0.05 µm³. The initially thin zygospore cell wall (~0.5 µm endospore, ~0.8 µm exospore) increases in thickness and develops a distinct, electron dense mesospore, which has a reticulate appearance (~1.4 µm) in Spirogyra sp. from Greece. The exo- and endospore show cellulose microfibrils in a helicoidal pattern. In the denser endospore, pitch angles of the microfibril layers were calculated: ~18 ± 3° in S. mirabilis, ~20 ± 3° in Spirogyra sp. from Austria and ~38 ± 8° in Spirogyra sp. from Greece. Overall this study gives new insights into Spirogyra sp. zygospore development, crucial for survival during dry periods and dispersal of this genus.

2.
Int J Biol Macromol ; 266(Pt 2): 131279, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38561115

RESUMO

The influence of ferulic acid (FA) on rice starch was investigated by incorporating it at various concentrations (0, 2.5, 5, 7.5, and 10 %, w/w, on dry starch basis) and subjecting the resulting composites to hot-extrusion 3D printing (HE-3DP) process. This study examined the effects of FA addition and HE-3DP on the structural, rheological, and physicochemical properties as well as the printability and digestibility of rice starch. The results indicated that adding 0-5 % FA had no significant effect; however, as the amount of FA increased, the printed product edges became less defined, the product's overall stability decreased, and it collapsed. The addition of FA reduced the elasticity and viscosity, making it easier to extrude the composite gel from the nozzle. Moreover, the crystallinity and short-range ordered structure of the HE-3D printed rice starch gel decreased with the addition of FA, resulting in a decrease in the yield stress and an increase in fluidity. Furthermore, the addition of FA reduced the digestibility of the HE-3D-printed rice starch. The findings of this study may be useful for the development of healthier modified starch products by adding bioactive substances and employing the 3D printing technology.

3.
Front Nutr ; 11: 1369950, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571748

RESUMO

Starch is a primary energy storage for plants, making it an essential component of many plant-based foods consumed today. Resistant starch (RS) refers to those starch fractions that escape digestion in the small intestine and reach the colon where they are fermented by the microflora. RS has been repeatedly reported as having benefits on health, but ensuring that its content remains in food processing may be challenging. The present work focuses on the impact RS on health and explores the different processes that may influence its presence in foods, thus potentially interfering with these effects. Clinical evidence published from 2010 to 2023 and studying the effect of RS on health parameters in adult populations, were identified, using PUBMED/Medline and Cochrane databases. The search focused as well on observational studies related to the effect of food processes on RS content. While processes such as milling, fermentation, cooking and heating seem to have a deleterious influence on RS content, other processes, such as cooling, cooking time, storage time, or water content, may positively impact its presence. Regarding the influence on health parameters, there is a body of evidence suggesting an overall significant beneficial effect of RS, especially type 1 and 2, on several health parameters such as glycemic response, insulin resistance index, bowel function or inflammatory markers. Effects are more substantiated in individuals suffering from metabolic diseases. The effects of RS may however be exerted differently depending on the type. A better understanding of the influence of food processes on RS can guide the development of dietary intake recommendations and contribute to the development of food products rich in RS.

4.
J Proteome Res ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38574199

RESUMO

Plant-based adhesives, such as those made from wheat, have been prominently used for books and paper-based objects and are also used as conservation adhesives. Starch paste originates from starch granules, whereas flour paste encompasses the entire wheat endosperm proteome, offering strong adhesive properties due to gluten proteins. From a conservation perspective, understanding the precise nature of the adhesive is vital as the longevity, resilience, and reaction to environmental changes can differ substantially between starch- and flour-based pastes. We devised a proteomics method to discern the protein content of these pastes. Protocols involved extracting soluble proteins using 0.5 M NaCl and 30 mM Tris-HCl solutions and then targeting insoluble proteins, such as gliadins and glutenins, with a buffer containing 7 M urea, 2 M thiourea, 4% CHAPS, 40 mM Tris, and 75 mM DTT. Flour paste's proteome is diverse (1942 proteins across 759 groups), contrasting with starch paste's predominant starch-associated protein makeup (218 proteins in 58 groups). Transformation into pastes reduces proteomes' complexity. Testing on historical bookbindings confirmed the use of flour-based glue, which is rich in gluten and serpins. High levels of deamidation were detected, particularly for glutamine residues, which can impact the solubility and stability of the glue over time. The mass spectrometry proteomics data have been deposited to the ProteomeXchange, Consortium (http://proteomecentral.proteomexchange.org) via the MassIVE partner repository with the data set identifier MSV000093372 (ftp://MSV000093372@massive.ucsd.edu).

5.
J Integr Plant Biol ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578168

RESUMO

Achieving seedlessness in citrus varieties is one of the important objectives of citrus breeding. Male sterility associated with abnormal pollen development is an important factor in seedlessness. However, our understanding of the regulatory mechanism underlying the seedlessness phenotype in citrus is still limited. Here, we determined that the miR159a-DUO1 module played an important role in regulating pollen development in citrus, which further indirectly modulated seed development and fruit size. Both the overexpression of csi-miR159a and the knocking out of DUO1 in Hong Kong kumquat (Fortunella hindsii) resulted in small and seedless fruit phenotypes. Moreover, pollen was severely aborted in both transgenic lines, with arrested pollen mitotic I and abnormal pollen starch metabolism. Through additional cross-pollination experiments, DUO1 was proven to be the key target gene for miR159a to regulate male sterility in citrus. Based on DNA affinity purification sequencing (DAP-seq), RNA-seq, and verified interaction assays, YUC2/YUC6, SS4 and STP8 were identified as downstream target genes of DUO1, those were all positively regulated by DUO1. In transgenic F. hindsii lines, the miR159a-DUO1 module down-regulated the expression of YUC2/YUC6, which decreased indoleacetic acid (IAA) levels and modulated auxin signaling to repress pollen mitotic I. The miR159a-DUO1 module reduced the expression of the starch synthesis gene SS4 and sugar transport gene STP8 to disrupt starch metabolism in pollen. Overall, this work reveals a new mechanism by which the miR159a-DUO1 module regulates pollen development and elucidates the molecular regulatory network underlying male sterility in citrus.

6.
Small ; : e2401706, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602199

RESUMO

In frigid regions, it is imperative to possess functionality materials that are ultrastrong, reusable, and economical, providing self-generated heat and electricity. One promising solution is a solar‒thermal‒electric (STE) generator, composed of solar‒thermal conversion phase change composites (PCCs) and temperature-difference power-generation-sheets. However, the existing PCCs face challenges with conflicting requirements for solar‒thermal conversion efficiency and mechanical robustness, mainly due to monotonous functionalized aerogel framework. Herein, a novel starch vitrimer aerogel is proposed that incorporates orientational distributed carboxylated carbon nanotubes (CCNT) to create PCC. This innovative design integrates large through-holes, mechanical robustness, and superior solar‒thermal conversion. Remarkably, PCC with only 0.8 wt.% CCNT loading achieves 85.8 MPa compressive strength, 102.4 °C at 200 mW cm-2 irradiation with an impressive 92.9% solar-thermal conversion efficiency. Noteworthy, the STE generator assembled with PCC harvests 99.1 W m-2 output power density, surpassing other reported STE generators. Strikingly, even under harsh conditions of -10 °C and 10 mW cm‒2 irradiation, the STE generator maintains 20 °C for PCC with 325 mV output voltage and 45 mA current, showcasing enhanced electricity generation in colder environments. This study introduces a groundbreaking STE generator, paving the way for self-sufficient heat and electricity supply in cold regions.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38590078

RESUMO

Unlike wild giraffe that primarily consume low starch browse, the preference of zoo-housed giraffe for consuming supplemental feeds over forage could increase the risk of digestive disorders such as ruminal acidosis. Our objective was to evaluate the effects of modifying a supplemental feed's non-fibre carbohydrate profile and physical form on nutritional, behavioural, and blood measures of giraffe in a zoological setting. Six non-lactating, adult, female reticulated giraffes were used in a two-pen modified reversal study using two dietary treatments in seven 21-day periods with data collected on days 15-21. Dietary treatments were a control feed comprised of commercially available products used at the time as the giraffe feed (GF) and an unpelleted experimental feed (EF). On a dry matter basis, GF and EF, respectively, contained 17.0% and 17.4% crude protein, 14.2% and 1.5% starch, 14.9% and 21.3% ethanol-soluble carbohydrates, 22.9% and 26.0% acid detergent fibre (ADF) and 9.50% and 14.9% ND-soluble fibre (NDSF), with modulus of fineness values of 3.62 and 4.82. Supplemental feeds, alfalfa hay, salt, and water were available for ad libitum consumption. Significance was declared at p ≤ 0.05. Intakes of hay, supplemental feeds, and total feed did not differ by diet (p > 0.28), though intakes of starch (0.93 and 0.12 kg; p = 0.05) and ADF (1.83 and 2.23 kg; p = 0.04) differed between GF and EF respectively. Giraffe behaviour values (min/48 h) were greater with EF for total eating (p = 0.04); diets were not detected as different for engagement in oral stereotypes (GF = 433, EF = 318 min/48 h; p = 0.22). Blood glucose was higher on GF than EF (99.0 and 82.3 mg/dL; p = 0.03). The lower EF blood glucose value is more similar to ranges reported for domesticated ruminants. No differences were detected for changes in body weight or body condition score in the 21-day periods (p > 0.32). Modification of supplemental feed carbohydrate profile and physical form can influence behaviour and blood glucose values of zoo-housed giraffe.

8.
Food Sci Biotechnol ; 33(6): 1381-1391, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38585572

RESUMO

The objective of this study was to evaluate the leachate and textural characteristics of cooked rice, and the correlations between the leachate properties and texture attributes were also investigated. Cooked waxy rice had much higher total solids and amylopectin amount in leachate than the normal and high-amylose rice. For all varieties, the amylopectin chain length of the leachate was similar, excluding Dodam cultivar. The rheological characteristics of the leachate solutions were highly dependent on the amylopectin amount of the leachate. Regarding the textural characteristics, Dodam had the highest hardness and the lowest adhesiveness. The principal component analysis showed substantial differences in leachate and textural characteristics of Korean cooked rice according to its amylose content. The adhesiveness was positively and negatively correlated with amylopectin amount of leachate and the proportion of long amylopectin chains, respectively. These results indicated that the leachate characteristics of cooked rice significantly influenced its textural attributes. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01446-3.

9.
Food Chem (Oxf) ; 8: 100202, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38586156

RESUMO

Insects such as the black soldier fly (BSF) are recently being studied as food sources to address concerns about how to meet the food demand of the growing world population, as conventional production lines for meat proteins are currently unsustainable sources. Studies have been conducted evaluating the use of insect proteins to produce extruded foods such as expanded snacks and meat analogues. However, this field of study is still quite new and not much has been studied beyond digestibility and growth performance. The purpose of this work was to evaluate the compatibility of protein extracted from BSF flour with corn flour starch within an extruded balanced shrimp feed model through molecular dynamics simulations, for which cohesive energy density and solubility parameter (δ) of both components were determined. The calculations' results for the protein molecule systems yielded an average δ of 14.961 MPa0.5, while the δ for starch was calculated to be 23.166 MPa0.5. The range of difference between both δ (10 > Î´ > 7) suggests that the interaction of the BSF protein with corn starch is of a semi-miscible nature. These results suggest that it is possible to obtain a stable starch-protein mixture through the extrusion process.

10.
Int J Biol Macromol ; 266(Pt 2): 131414, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582481

RESUMO

This research investigated the impact of ohmic heating (OH) on the physicochemical properties and resistant starch formation in native corn starch. Electric field strengths (EFS) of 50, 75, and 100 V/cm were applied to native starch, at a starch-water ratio of 1:1 w/v. The conductivity of the medium is a crucial factor in ohmic heating. In this study, the conductivity values at 120 °C were measured at 1.5 mS/m. The study revealed two distinct outcomes resulting from the application of different EFS. Firstly, a thermal effect induced gelatinization, resulting in a reduction in the enthalpy of corn starch, an increase in the water absorption index (WAI) and the water solubility index (WSI), and a decrease in peak viscosity. Secondly, a non-thermal effect of OH was observed, leading to the electrolysis of certain starch compounds and water. This electrolysis process generated radicals (-OH) that interacted with starch components, augmenting the percentage of resistant starch. This increase was associated with elevated levels of carbonyl and carboxyl groups at 75 and 100 V/cm.

11.
Materials (Basel) ; 17(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38591383

RESUMO

Poly(butylene adipate-co-terephthalate) (PBAT) is widely used for production of biodegradable films due to its high elongation, excellent flexibility, and good processability properties. An effective way to develop more accessible PBAT-based bioplastics for wide application in packaging is blending of PBAT with thermoplastic starch (TPS) since PBAT is costly with prices approximately double or even triple the prices of traditional plastics like polyethylene. This study is focused on investigating the influence of TPS/PBAT blend ratio and montmorillonite (MMT) content on the physical and mechanical properties and molecular mobility of TPS-MMT/PBAT nanocomposites. Obtained TPS-MMT/PBAT nanocomposites through the melt blending process were characterized using tensile testing, dynamic mechanical thermal analysis (DMTA), and X-ray diffraction (XRD), as well as solid-state 1H and 13C NMR spectroscopy. Mechanical properties demonstrated that the addition of TPS to PBAT leads to a substantial decrease in the tensile strength as well as in the elongation at break, while Young's modulus is rising substantially, while the effect of the MMT addition is almost negligible on the tensile stress of the blends. DMTA results confirmed the formation of TPS domains in the PBAT matrix. With increasing TPS content, mobility of starch-rich regions of TPS domains slightly increases. However, molecular mobility in glycerol-rich regions of TPS domains in the blends was slightly restricted. Moreover, the data obtained from 13C CP/MAS NMR spectra indicated that the presence of TPS in the sample decreases the mobility of the PBAT chains, mainly those located at the TPS/PBAT interfaces.

12.
Int J Biol Macromol ; 266(Pt 2): 131206, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38574919

RESUMO

In this study, cinnamic acid modified acid-ethanol hydrolyzed starch (CAES) with different degrees of substitution (DS) was fabricated to stabilize Pickering emulsions and probed their application for encapsulating curcumin (Cur). Successful preparation of CAES (with DS from 0.016 to 0.191) was confirmed by 1H NMR and FT-IR, and their physicochemical properties were characterized by XRD, SEM, and TGA. The biosafety evaluations and surface wettability confirmed the excellent safety and amphiphilic character of CAES. CAES-stabilized Pickering emulsion (CS-PE) exhibited different emulsion stability at different DS, with CS-PE (0.031) showing the highest stability. CLSM revealed that the CAES (0.031) formed a dense barrier on the surface of the oil droplets, preventing them from coalescing. The CS-PE (0.031) achieved effective encapsulation of Cur (up to 96.2 %). Compared with free Cur, CS-PE (0.031) exhibited better photochemical stability, higher free fatty acids (FFA) release, and enhanced bioaccessibility. These studies suggested that CAES may serve as a promising emulsifier for stabilizing Pickering emulsions to encapsulate and deliver hydrophobic bioactive compounds.

13.
J Maxillofac Oral Surg ; 23(2): 337-339, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38601257

RESUMO

Introduction: Frey's syndrome, described by Lucy Frey in 1923, is a unique condition characterized by sweating, flushing, and reddening as a direct response to mastication. This phenomenon results from the aberrant regeneration of postganglionic parasympathetic neurons originating from the auriculotemporal nerve and the subsequent acetylcholine secretion induced by masticatory stimuli. Although rare, this syndrome can have multiple underlying causes and is frequently observed, occurring in up to 65% of cases following lateral parotid resections. Additionally, it can less commonly manifest after neck dissection, facelift procedures, or be associated with diabetes mellitus. Method: This article outlines a comprehensive diagnostic algorithm for Frey's syndrome, which includes the utilization of the Minor-Starch-Iodine Test. This test is a key component in diagnosing the syndrome and is discussed in detail, providing insights into its procedure and interpretation. Additionally, the gold standard of treatment for established Frey's syndrome, botulinum toxin A, is thoroughly described, including its mechanism of action, administration, and potential side effects. Discussion: Finally, the article underscores the need for further research to enhance our understanding of Frey's syndrome, leading to better diagnostic methods and more tailored treatment options for patients.

14.
Food Technol Biotechnol ; 62(1): 78-88, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38601957

RESUMO

Research background: Peanut oil (Arachis hypogaea L.) is a rich source of unsaturated fatty acids. Its consumption has been reported to have biological effects on human health. Unsaturated, especially polyunsaturated fatty acids (PUFA) found in peanut oil are highly susceptible to oxidation, leading to the formation of harmful compounds during processing and storage. The aim of this study is to prevent the oxidation of peanut oil PUFA by encapsulation in a protein-polysaccharide complex using microwave drying. Experimental approach: The combined effect of corn starch (CS) and whey protein isolate (WPI) was evaluated for ultrasound-assisted microwave encapsulation of peanut oil to prevent oxidative degradation. The effect of independent parameters, viz. CS:WPI mass ratio (1:1 to 5:1), lecithin mass fraction (0-5 %), ultrasonication time (0-10 min) and microwave power (150-750 W) on the encapsulation of peanut oil was evaluated using response surface methodology (RSM). The process responses, viz. viscosity and stability of the emulsion, encapsulation efficiency, peroxide value, antioxidant activity, free fatty acids (FFA), moisture, angle of repose and flowability (Hausner ratio (HR) and Carr's Index (CI)) were recorded and analysed to optimize the independent variables. Results and conclusions: The viscosity of all emulsions prepared for encapsulation by ultrasonication ranged from 0.0069 to 0.0144 Pa·s and more than 90 % of prepared combinations were stable over 7 days. The observed encapsulation efficiency of peanut oil was 21.82-74.25 %. The encapsulation efficiency was significantly affected by the CS:WPI mass ratio and ultrasonication. The peroxide value, antioxidant activity and FFA ranged from 1.789 to 3.723 mg/kg oil, 19.81-72.62 % and 0.042-0.127 %, respectively. Physical properties such as moisture content, angle of repose, HR and CI were 1.94-8.70 %, 46.5-58.3°, 1.117-1.246 and 10.48-22.14 %, respectively. The physical properties were significantly affected by surface properties of the capsules. The higher efficiency (74.25 %) of peanut oil encapsulation was achieved under optimised conditions of CS:WPI mass ratio 1.25, 0.25 % lecithin, 9.99 min ultrasonication and 355.41 W microwave power. Novelty and scientific contribution: The results of this work contribute to the fields of food science and technology by providing a practical approach to preserving the nutritional quality of peanut oil and improving its stability through encapsulation, thereby promoting its potential health benefits to consumers and applications in various industries such as dairy and bakery.

15.
Food Chem ; 450: 139412, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38643646

RESUMO

Dodecenylsuccinic anhydride (DDSA) has been widely used to obtain amphiphilic starches. In this study, we investigated the functionalities of synchronous intermissive multi-ultrasound-assisted esterified starch. Compared to native starch (NS), it was deduced that multi-ultrasound-modified starch (US), esterified starch (ES), and multi-ultrasound-assisted esterified starch (UES) exhibited increased viscosities but reduced gelatinization temperatures and thermal stabilities. The viscoelastic moduli, retrogradation behaviors and hydrophobicity of the ES and UES species significantly altered. Moreover, the results of structural characterization suggested that esterification reduced the molecular weight and structural order of starch, whereas the intermissive ultrasonication treatment did not aggravate the structural disruption of ES. Additionally, compared with NS and US, the emulsification abilities of the ES and UES specimens were improved, leading to the desirable effect of stabilizing astaxanthin. Overall, this study provides a method for preparing amphiphilic starch, which can be exploited as a potential emulsifier and emulsion stabilizer for bioactive compounds.

16.
Int J Biol Macromol ; : 131681, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38643913

RESUMO

Whole wheat bread has high nutritional value, but it has inferior baking quality and high glycemic index, which needs to be improved by methods such as adding protein and ß-glucan. This study investigated the effects of ß-glucan and highland barley protein of different molecular weights (2 × 104, 1 × 105, and 3 × 105 Da) and different hydrate methods (pre-hydrate and not pre-hydrate) on the characteristics of whole wheat dough and bread. The mixing properties and rheological properties demonstrated that ß-glucan pre-hydrated with highland barley protein were able to reduce the dough tan δ, reduce the dough viscoelasticity, while enhance the gluten network structure and dough deformation resistance. Compared to the control sample, the medium molecular weight pre-hydrate bread had a better specific volume of 3.21 mL/g, lower hardness of 527.28 g. In vitro starch digestion characteristics and ATR-FTIR showed that low and high molecular weight pre-hydrate increased the short-range ordered structure of starch and reduced the starch digestibility, while not pre-hydrated medium molecular weight hydrate had the lowest level of starch digestibility.

17.
J Sci Food Agric ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629441

RESUMO

BACKGROUND: Industrial starch hydrolysis allows to produce syrups with varying functionality depending on their Brix value and dextrose equivalent (DE). As the current methods for evaluating these products are labor-intensive and time-consuming, the objective of this study was to investigate the potential of NIR spectroscopy for classifying the different tapioca starch hydrolysis products. RESULTS: NIR spectra of samples of seven products (n = 410) were recorded in transflectance mode in the 12 000-4000 cm-1 range. Next, orthogonal partial least squares (OPLS) regression models were built to predict the Brix and DE values of the different samples. To classify the different starch hydrolysis products, support vector machines (SVM) were trained using either the raw spectra or latent variables (LVs) obtained from the OPLS models. The best classification accuracy was obtained by the SVM classifier based on the LVs from the OPLS model for DE prediction, resulting in 95% correct classification over all classes. CONCLUSION: These results show the potential of NIR spectroscopy for classifying tapioca starch hydrolysis products with respect to their functional properties related to the Brix and DE values. This article is protected by copyright. All rights reserved.

18.
J Sci Food Agric ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629447

RESUMO

BACKGROUND: Physically modified starches can be classified as natural ingredients on food labels and clean label products. Thus, the market demand for physically modified starch is increasing. Potato, tapioca, and corn starches were physically modified by mild heat treatment in an alcoholic solution to enhance their gelling property and freeze-thaw stability. RESULTS: During mild heating of starch suspension (40% w/w) in 10% ethanol solution at the onset gelatinization temperature, granular swelling of starch occurred, followed by amylose leaching with medication of the surface structure of the starch granules. All treated starches exhibited increased gelatinization and pasting temperatures and decreased breakdown for pasting due to improved stability against shear and heat. The treated starches had higher hardness, cohesiveness, and springiness of gel than the respective native starches, and these gel properties were more pronounced in potato starch than in tapioca and corn starches. The treated starches showed substantially reduced gel syneresis during freeze-thawing. CONCLUSION: Physical modification of starch by mild heat treatment in an alcoholic solution substantially improved its gelation ability and freeze-thaw stability. This article is protected by copyright. All rights reserved.

19.
J Sci Food Agric ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38624005

RESUMO

BACKGROUND: The material composition significantly influences the oil absorption and quality characteristics of fried food products. The oil absorption of restructured potato chips is highly dependent on the structural properties of the restructured potato-based dough produced prior to frying. In this study, three types of starch were added to modify the structure of the restructured potato-based dough, allowing the production of potato chips with less oil absorption. RESULTS: Distinct differences were observed among the three types of starch in terms of amylose content, chain length distribution, swelling power, solubility, crystalline structure, and pasting properties. The addition of wheat starch, corn starch, and tapioca starch changed the rheological properties, water distribution, and the strength of the restructured dough. Importantly, adding wheat starch and corn starch significantly lowered the oil content of potato chips by 7.94% and 13.06%, respectively. The reduction in oil absorption by potato chips was attributed to the increased strength of the starchy gel network of the dough, a slower rate of water evaporation, and a limitation of dough expansion during frying. CONCLUSION: Adding wheat starch or corn starch to the restructured potato-based dough resulted in a decrease in the oil absorption of potato chips by creating a stronger starchy gel network in the dough. This study could guide the development of suitable material compositions, which are important for producing fried food products with lower oil content. This article is protected by copyright. All rights reserved.

20.
Carbohydr Polym ; 335: 122070, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616092

RESUMO

Starches are hydrolyzed into monosaccharides by mucosal α-glucosidases in the human small intestine. However, there are few studies assessing the direct digestion of starch by these enzymes. The objective of this study was to investigate the changes in the structure and enzyme binding of starches during in vitro hydrolysis by mammalian mucosal enzymes. Waxy maize (WMS), normal maize (NMS), high-amylose maize (HAMS), waxy potato (WPS), and normal potato (NPS) starches were examined. The order of the digestion rate was different compared with other studies using a mixture of pancreatic α-amylase and amyloglucosidase. NPS was digested more than other starches. WPS was more digestible than WMS. Hydrolyzed starch from NPS, NMS, WPS, WMS, and HAMS after 24 h was 66.4, 64.2, 61.7, 58.7, and 46.2 %, respectively. Notably, a significant change in the morphology, reduced crystallinity, and a decrease in the melting enthalpy of the three starches (NPS, NMS, and WPS) after 24 h of hydrolysis were confirmed by microscopy, X-ray diffraction, and differential scanning calorimetry, respectively. The bound enzyme fraction of NPS, NMS, and WPS increased as hydrolysis progressed. In contrast, HAMS was most resistant to hydrolysis by mucosal α-glucosidases in terms of digestibility, changes in morphology, crystallinity, and thermal properties.


Assuntos
Amido , alfa-Glucosidases , Humanos , Animais , Hidrólise , Amilose , Varredura Diferencial de Calorimetria , Ceras , Zea mays , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...